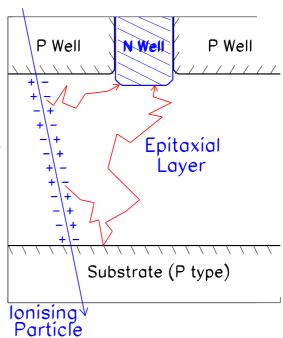
High Precision CMOS Sensors: R&D Status and Plans

IReS-Strasbourg: A.Besson, M.Deveaux, A.Gay, G.Gaycken, Y.Gornushkin, D.Grandjean, F.Guilloux, A.Himmi, Ch.Hu, H.Souffi-Kebbati, I.Valin, M.Winter

in coll. with LEPSI

GSI - 13.02.2004


Outline

- **▶** Introductory remarks: important fabrication parameters
- **▶** Achieving a High Read-Out Speed
- **►** Exploring new fabrication processes
- **▶** The Issue of Radiation Hardness
- **► Summary & Outlook**

CMOS Sensors: Principle and Advantages

▶ Principle of Operation:

- p-type low-resistivity Si
- \Rightarrow only NMOS transistors allowed
- \hookrightarrow signal charge created in epitaxial layer (low doping) : Q \sim 80 e-h / μm
- **⇔** charge collected by diode (n-well)
- → excess carriers propagate to diode
 with help of reflection on boundaries
 with p-well and substrate (high doping)

► Important fabrication parameters:

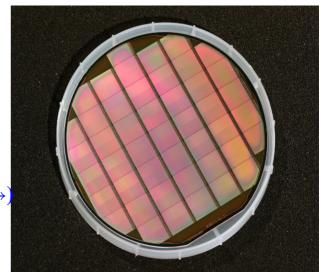
- feature size
- ullet epitaxial layer characteristics: thickness, doping profile, if no epitaxial layer ullet low substrate doping
- nb of metal layers
- transistor polarisation voltages
- leakage current
- insulator composition
- etc.
- Exploring fabrication processes is a permanent activity ...

Advantages and established Tracking potential

▶ Advantages:

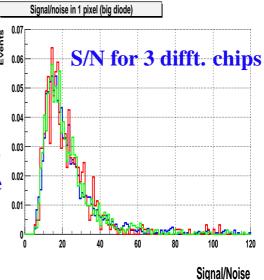
- signal processing μ circuits integrated on sensor substrate: inside pixels (NMOS transistors, capacitors) & on chip periphery \hookrightarrow System-on-Chip (SoC)
- sensitive volume (\sim epitaxial layer) is \sim 10 μm thick \hookrightarrow sensors may be thinned down to < 20 μm
- spatial resolution and material budget as attractive as with CCD BUT higher read-out speed and radiation tolerance
- ► CMOS sensors designed in Strasbourg since 1999
 - 9 prototypes (called MIMOSA) designed (2 with Saclay)

 ⇒ 8 chips fabricated out of which 6 tested
 - Adequacy for particle tracking demonstrated:


$$\hookrightarrow \epsilon_{det} >$$
99%, $\sigma_{sp} \sim$ **1.5** μm

• Developed for future Vertex Detectors (e.g. Linear Collider) and for biomedical imaging and therapy, dosimetry, etc.

MIMOSA-5: 1st real scale prototype


► Main characteristics:

- 19.4 x 17.4 mm 2 wide chips made of \sim 1 million pixels (17 μm pitch)
- each chip = 4 arrays read out in // each array = 512x512 pixels
- fab. process: AMS 0.6 μm (6" wafers —
- 3 wafers thinned down to 120 μm (some chips thinned to 15 μm !)

▶ 4 chips exposed to 120 GeV/c π^- at CERN-SPS:

- Noise \sim 20 e⁻ENC
- \bullet S/N \sim 20 (seed pixel see figure)
- detection efficiency \sim 99 %
- single point resolution \sim 2 μm
- ullet gain dispersion over chip surface \sim 0.3 %
- very homogeneous perfo. over chip surface
- very small dispersion from chip to chip

▶ Application to STAR Vertex Detector Upgrade:

- performances close to specifications of STAR Vx Det. upgrade (2006)
- optimised chip (MIMOSTAR-1) being designed:
 - \star r.o. time = 4-8 ms
 - \star spatial resolution \sim 3 μm (30 μm pitch)
 - \star chip thickness \sim 50 μm
 - \star 2 layers, i.e. \sim 1000 cm 2 to cover

Achieving high read-out speed (1)

- ► Number of pixels per sub-array (N_{pix}) ?
 - ullet \mathbf{N}_{pix} is limited by $\mathbf{max}\ \mathbf{t}_{R.O.}$ allowed o upper limit and by \mathbf{Q} coll. time o low limit
 - charge coll. time \lesssim 100 ns (depends on sensitive volume) \Rightarrow ${\rm t}_{R.O.} >> 1~\mu s$ mandatory
 - signal treament inside pixel:

$$m f_{st} \ \gtrsim rac{f_{clock}}{N_{clock}} \ \sim \ rac{50 \cdot 10^6}{5} \ \sim \ 10 \ MHz$$

 \hookrightarrow N_{pix}/sub-array:

$${
m t_{R.O.}} \ = rac{{
m N_{pix}}}{{
m f_{st}}} \
ightarrow \ 100 \ {
m pixels \ for \ 10} \ \mu {
m s}$$

Achieving high read-out speed (2)

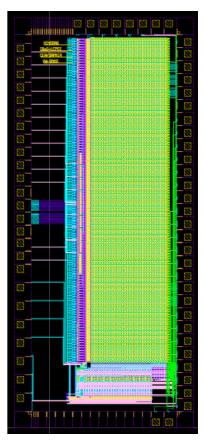
- ► Number of sub-arrays to treat in parallel?
 - detector surface (S_D) subdivided in N_{sa} subarrays

$$N_{sa} = {S_D \over 100~p^2}
ightarrow N_{sa}/cm^2 = 10^6/p^2~(p~in~\mu m)$$

$$p = 20~\mu m
ightarrow 2500~sub-arrays / cm^2$$

$$p = 40~\mu m
ightarrow 625~sub-arrays / cm^2$$

- ► Choice of pixel pitch according to:
 - impact parameter resolution (depends also on material budget and lever arm)
 - ullet double hit resolution $(\mbox{depends also on sensitive volume}
 ightarrow \mbox{cluster size} \; , \\ T_{\it op}, \mbox{tracking performances})$
 - occupancy (depends also on $t_{R,O}$.)
 - signal charge collection efficiency (depends also on sensitive volume)

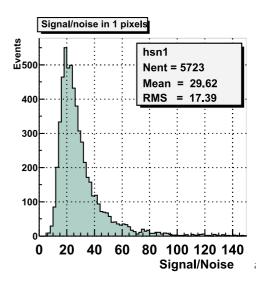

Achieving high read-out speed (3)

Conclusion:

- Monte Carlo simulations: impact parameter resolution, double hit resolution, occupancy
- ullet fabrication process exploration: sensitive vol., signal charge coll. eff., influence of $T_{\it op}
 ightarrow S/N$
- exploration of signal collection & treatment architectures: S/N, \mathbf{f}_{clock} , \mathbf{f}_{st} , \mathbf{P}_{diss}

Achieving high read-out speed (4)

- **▶** Chips organised in columns read out in parallel
- ▶ Main difficulty: data flow ($\sim 1 \text{ Tbit/s/cm}^2$)
- ▶ 1st sensor with sparsification integrated / substrate fab. in 2002:
 - \diamond made of 30 columns of 128 pixels (20 μm pitch)
 - \diamond column read-out time \sim 25 μs
 - pre-amplification (x5.5) and CDS integrated inside each pixel (29 T and 3 capa / pixel)
 - discriminator integrated on chip periphery(1 discri. per column; design in Saclay)
- \hookrightarrow Main test results (55 Fe source):
 - \star individual pixel works fine: 5.9 keV X-Rays observed; N \sim 15 e^-ENC
 - * comparators work fine
 - \star BUT pixel to pixel signal dispersion is too large



Achieving high read-out speed (5)

- **▶** 2 new prototypes were designed in 2003
- ► MIMOSA-7:
 - ullet AMS 0.35 μm fab. process without epitaxial layer
 - test of new charge coll. system, based on low noise preamplifier integrated inside n-well (PhotoFET)
 - \hookrightarrow back from foundry; tests in preparation \rightarrow results in Autumn
- ► MIMOSA-8 (with Saclay):
 - ullet TSMC 0.25 μm fab. process with 8 μm epitaxial layer and 2 transistor polarisations
 - test of high gain (15 ?) low noise preamplifier inside pixel
 - \hookrightarrow back from foundry \lesssim March tests in preparation \rightarrow results end 2004 ?

Exploration of non-standard technologies

- ► Processes without epitaxial layer but with low doping substrate
- MIMOSA-4 fab. in AMS $0.35 \mu m$ no-epi.
- Tests with 120 GeV/c π^- at CERN-SPS:
 - \star S/N \sim 30 (large signal charge)
 - \star detection efficiency \gtrsim 99.5 %
 - \star single point resolution \sim 2.5 μm (20 μm pitch)

- ullet SUCCESSOR-2 fab. in same process but with 40 μm pitch
 - **★ detection efficiency** ≥ 99.9 %
 - \star single point resolution \sim 5 μm
 - \hookrightarrow Low doping substrate offers long e^- life time
 - \Rightarrow Technology without epitaxial layer is very promissing ...
 - \hookrightarrow 40 μm pitch works well
- ▶ Processes with thick epitaxial layer (for imaging) and low leakage current (\Rightarrow low noise at T_{room})
- ullet MIMOSA-9 designed in AMS 0.35 μm OPTO process

(perhaps \sim 20 μm epitaxial layer ...)

 \hookrightarrow back from foundry in April-May \Rightarrow test results for Summer

The issue of radiation hardness

▶ Bulk damage:

- Tests of MIMOSA-1 and -2: $Q(cluster) \ loss \ for \lesssim 10^{12} n_{eq}/cm^2 \ (and \ modest \ noise \ increase)$ $\hookrightarrow \epsilon_{clet} \ loss \ of \ a \ few \ \%$
- Rad. tol. is process dependent \Rightarrow need more measurements, esp. from other fab. processes (e.g. no-epi)
- \hookrightarrow Room for improvement ? \rightarrow explore recovering procedures (vs t, T)

▶ Ionising radiation:

- Few 100 kRads demonstrated to be OK
- Rad. tol. depends strongly on fabrication details \hookrightarrow limit not yet found for no-epi fab. process (AMS-0.35 μm)
- Understanding of phenomena and parameters involved relies on exploration of fab. processes & on MC simulations (ISE-TCAD)
- **○** Work under way (also an issue for bio-medical applications)

Summary & Outlook

- **▶** Summary of 2003:

 - Tests of no-epi proto.: excellent ϵ_{det} & σ_{sp} 40 μm pitch works
 - Tests of 1st fast (Col. Paral.) chip (M-6): individual pixel and dicri. OK but too large signal dispersion
 - Radiation tolerance investigations
 - Design of 2 other Col. Paral. chips (M-7 & -8)
 - Design of 1st prototype in OPTO technology (M-9)

▶ Plans for 2004:

- Pursue thinning tests with MIMOSA-5
- Test OPTO prototype MIMOSA-9
- Pursue studies of radiation tolerance